A Vertical Campus

- Create spaces of collaboration & solitude
- Synergies of data & people
- Porosity, warmth & vibrancy
- Open ground & second floor
- Flexibility
- Develop departmental identity
Diagonal louvers along double bay depth in front of 60% vision glazing is used in the deep floor plate zones to cut out the solar gain and drive daylight deep into the plan.
Saw Tooth Facade along single bay depth:
A vertical sawtooth with 40% vision glazing is used on the shallow single bay depth floor plate zone where daylight does not need to penetrate as deep into the floorplate.
The shifted volumes break down the scale into vertical neighborhoods and create outdoor collaboration spaces on all sides of building.
View looking north from corner Commonwealth Avenue and Granby Street
A: Chilled beams for space conditioning and ventilation
B: Supply air chase connected to air distribution ductwork
C: Return air chase
D: Fan powered box pulling air from plenum and providing cooling
HPGX System Anatomy

Patented high strength, lightweight fiberglass casing presents the lowest thermal resistance and pressure drop of any system commercially available. It is the proven leader of performance.

Nylon reinforced EDPM center flow channel provides thermal separation between the two fluid streams, minimizing thermal crosstalk. Outer ridges provide convective heat transfer.
HOW GROUND-SOURCE WORKS

SUMMER
HOW GROUND-SOURCE WORKS

WINTER

[Diagram showing a ground source heat exchange system in winter]
ASHRAE 90.1-2013 Stretch Code Baseline

Proposed EUI without on-site solar

Proposed EUI with on-site solar

Proposed EUI with on-site solar + off-site wind

EUI (kBtu/sf-yr)

67
42
31
0
CONSTRUCTION COST

HVAC, Core + Shell, & Fit-Out

<1%

GEO

Typical High Performance

Net Zero
BORE FIELD INSTALLATION
PIPE INSTALLATION
FRAC TANKS, FILTERS + PUMPS
SEDIMENTATION